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ABSTRACT JU~tificatIo

It is shown that solutions of the Neumann problem 3

Ut i(Vulp-2VU) i lX(,) Availabili-tyCde

TV 0 on 39 x (0,T) Pc.Lal

u(x,0) =u 0(x) in S2/ I
tend to some constant solutions in finite time, where 1 < p < 2 and fl is a -

bounded domain inR.

In order to prove this, we establish Sobolev-Poincarfi's inequality for

functions in W1'P(Q) under some assumptions.

We treat the extinction phenomena for the equation

Ut =div(I~I V)+A (A > 0) with Neumann boundary conditions.
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SIGNIFICANCE AND EXPLANATION

qfle equation -ut- -dk-4 --VuI))--' u-) isa model for a broad class of

singular and degenerate parabolic equations. The degenerate type (p > 2)

has been treated by many authors, but the behavior of solutions of the

singular type (I < p < 2) is less well understood.

In this paper we establish the homogenization effect of the singular S

problem with Neumann boundary conditions, i.e. there exists a finite number

T* > 0 such that a solution u(x,t) tends to some constant at t T* and

u(x,t) const. for t > T*.

o

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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SOBOLEV-POINCARE' S INEQUALITY AND TE

NEUMANN PROBLEM FOR Ut - div(IVujp-2Vu)

Isamu Fukuda*

1. INTRODUCTION

In this paper, we will discuss the Neumann boundary value problem for the equation

ut div (IVuIp-2VU) ( U) in (9 x (0,T)

=0 on 3i x (0,T) (NP). -

u(x,0) u0 (x) in S1

where I < p < 2, (9 is a bounded domain in TPwith smooth boundary 8fl and - is an

outer normal derivative of u.

Consider the problem (NP) in a (0,1). It takes the form

Ut (1u xiP2ux)x in (0,1) x (0,T)

ux(0,t) =ux(l,t) =0 t e (0,T) (NP)1

u~x,0) -u 0 (x) X e (0,1)

Differentiating formally this equation with respect to K, we obtain that v(E u) x

satisfies

vt -(IvIp-2v)xx in (0,1) x(0,T)

v(0,t) - V(1,t) - 0 t e (0,T) (UP)1

v(x,0) - VOWx (2- uux(x)) x e (U,T).

From Sabinina 115] and Berryman-Holland [61, we know that v(x,t) tends to zero in

finite time, that is, ux(x,t) tends to zero in finite time. Hence there exists a

positive number T* such that u(x,t) 0( f Ux~x for t I T*.

in other words, we obtain the interesting phenomenon that the solution becomes

homogeneous in finite time.

*Department of Mathematics, Kokushikan University, Setagays Tokyo 154, Japan

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



The question comes out how much of this is shared by the Neumann problem for (NP) in

general domain in 3N . (Alikakos [1])

We will here give an answer for this problem.

In the proof, Sobolev-Poincarg's inequality for functions belonging to W1 'P(Q) (not

W"P(W) plays an essential role. Hence we will establish this inequality under some
0

assumptions before proving the homogenization effect of the Neumann problem (NP).

The singular and degenerate equation (NP) with any p > 1 has been actively studied

and is a model for a broad class of sing ar and degenerate parabolic equaitons.

Existence, uniqueness and regularity results for both case I < p < 2 and p > 2 can be

found in Lions [12], di Benedetto [7] and Otani [14].

Especially the case p > 2 has been treated by Alikakos-Rostamian (2], (3], [4) and

Alikakos-Evans [5]. In their papers, decay estimates for the gradient of the solutions in

LP(Q) and L(Ql) have been obtained. (L -estimate under the assumption that Q is

convex.) Moreover, the regularizing effect has been proved using the monotonicity of Vu

in L (0).

Throughout this paper, we denote LP-norm 1"1 by II and abbreviate 0 in

the integral f • dx.

This work was done when the author was visiting the Mathematics Research Center at the

University of Wisconsin-Madison. I wish to thank Prof. M. G. Crandall for his useful

suggestion and Prof. M. Tsutsumi for his helpful comment.

2. SOBOLEV-POINCARE S INEQUALITY

It is well-known that Sobolev-Poincarg's inequality holds for functions belonging to

W 'P(1), but we can not apply this inequality to the Neumann problem. Then we need to
0

establish the inequality for functions belonging to W1"P(Q) under some assumptions.

Proposition 2.1

Let (s) be a continuous function from R to R, and * has only one zero at

s = 0, that is, *(s) - 0 implies s 0.

-2-
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Z 7

If J (v(x))dx =0 and v belongs to W lP(fl) (p > 1) then

IVIqIC IVylp

for < and c is a constant independent of v and depends on p~q and Q.N
p qb

Proof. Assume that the statement is false. Then there exists a sequence {vn such that

Iv I >nIVv I1 (2.1)
n q n P

Without loss of generality, we can assume Iv nI - 1.

Since (vI is bounded in W1'P(G) and 2.--<- we can choose a subsequence
n ~p q -N

(v such that v* tends to v strongly in Lq(Q) and v 40.

From (2.1), ye have
lIv I 1

Then Vv goes to zero as n * and Vv 0. Hence v is constant and not zero.n

On the other hand, since f *(v~x))dx 1 01*Cv) - 0, we can reduce that v(x) - 0.

This is a contradiction. Q.E.D.

This proposition is a generalization of Sobolev-Poincarfi's inequality under the

condition f v~x)dx -0. (P152, Gilbarg-Trudinger (101)

Corollary.Z

Lest I < p < 2 and k 1, 1.

if f w(x)dx -0 and V(jwj P' w) belongs to LP(Q), then

k-1

for k > max(1, -(2N -p - p)) and K is a constant independent of w and depends on
- p

p,k and A. k-1 k-i

Proof. in the proposition, taking *(a) - 1 pSk1 , v -w w, p =p and

q -p -k-i'we can easily obtain the corollary.

p + -3-



3. NEUMNN PROBLL14 FOR ut A u

Integrating the equation (NP) over A2 x [O,t), we have

j u(x,t)dx =f uo(x)dx .(3.1)

Let U0  .4r ,u(,)d. and w(x,t) .(x,t) - u which satisfies

f w(x,t)dx 0

and

wt -Aw in a2 x (0,T)

aw
a= 0 on 302 x (0,T) ,(NP) 2

w(x,O) u0(x) -U 0  Wo in (

Initially we discuss the existence and uniqueness results of the problem (NP)2.

Theorem 3.1

Let wo be in Lk (52). (k ,~1) Then there exists an unique solution of (keP)2

satisfying

(1) w e C([0,T] Lkl'()) nl LP(0,T W
1
'P((2)),

Since the equation is singular, we regularize the problem, obtain various estimates

rigorously and then get the results by passing to the limit.

We associate with problem (NP)2 the following nonsingular problem

w div ((IVw,1 2 + C) 2 VwE) in (2 x (0,T)

awC
=0 on ail (0,T) (NP)

w~ (x'0) W W(x in S1
00

E k+1with E > Ui and w~ e c(l) such that w0  w0  strongly in L 2)as E 0. By the
0

general theory of quasilinear parabolic equation (Chapter 5, 111]), the solutions of (NP)~

are C x [0,T]).

We have the following lemma.

-4-



Lemma 3.1

Let W be a solution of (NP) E. We have

k+1W C (k > 1) (3.2)

Iy(t)I < C (3.3) ~
pS

T
f t1wt (t)I 2dt <C (3.4)
0

where C are various positive constants independent of e e (0,1] and depend on

T, Q, wo, k and p.

Proof. multiplying the equation (NP) £b IwXtI w(x ), integrating over fland

using integration by parts, we have

f wt~wI '~w x + f (IVwI 2 + 2) VW~V Iwl )dx 0

from which we deduce

Tk - at- f 1We~~ + k f 1W£k~j~j + )2~w dx =0 (3.5)

Here and front now on, we abbreviate variables x and t of w(x,t) in the integrand. .* .

Since the second term of (3.5) is nonnegative, we have

WE(t)I y W(()), w
k+1 =k+1 = 0 k+1

which implies (3.2). P
We take k I in (3.5) to obtain

I Id E 2 x f (lgwE1
2 + 2) 1Vwd 12 0

from which we have

272
I d C1 d C1 + E 2 x C ( V c 2 + C) 2 d x . (3.6at- f I W 2  + f (IVW~I (3-6)(Iw~

Integration (3.6) from 0 to T yields



T
I1w C (T) 12 + ff ICI2+E2 xt<aT +1 IJ12

2 0 V~ 2  e 2 xt-bI 2 '0 2

for e e (0,1].

This implies

T T£
f f jV.ElXdt < I f(IVwI, + C)2 dxcdt < C(37

0 0

Multiplying the equation (NP)~ by tw C(x,t) and integrating over Lwe have

t fI cj~2d. + t f (1,wcf2 + c)2 V.C.V Edx 0

which implies

t IJ j 2d. + d -f tlVw~ 2 + C)2 dx 0 *(3.8)t p dt

Integration (3.8) from 0 to T and integration by parts yield

T C 1ftow (t)l dt +1 fj ElwF(xT)
1 2 2

0 t 2 pxi + )d

f2 fT (IVw£_(xt) 12 + C) 2dxdt 0 .(3.9)
p 0

From (3.7) and (3.9), we have

T
f tow (t~u 2

d <C
0 t tI;- 

.

Q.E.D.

C 6Now let W and w be solutions of (UP) Cwith initial conditions w and o

respectively.

By the monotonicity of the operator Au =-div~i~~ )2V) we obtain

-6-
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which implies that {wel is a Cauchy sequence in CU[O,TJ s Lk+'(Q)) Then wc tends

to w strongly in C((0,T] L Lk+1( M).

Moreover, by the well-known argument of the theory of monotone operator (P160, Lions

(12]) and (3.4), we obtain

div((IVwC,
2 + C) wc div(IjVwIp 2 w

2
weakly in L (Q2 X (T,T)) for any T > 0.

We conclude that w is a desired solution of (NP)2.

R~emark. Since w(t) belongs to W1 P(E2) for a.e. t e (0,T), then -0 in the sense
1 1 1v

-. 23w. L (0,T , W P - irfP' -i' P
that Iv.IP TV Y0, (92)) where W r (a) is dual of Wp ((2) and

+ 4 1. (P165, Lions [12] and Lions-Magenes (13])
p p

We now arrive at the main theorem.

Theorem 3.2.

Let u(x,t) be a solution of (NP) with initial conditions uO eL

k max(1,-! (2- p -Np)), andu;0  f~ uo(x)dx.
P

Then there exists a number T* > 0 such that

u(t) + in Lk+ ((2) as t + T0

and u ut 0 for t T*

0 0Ok+1
where T' is bounded above by-

Moreover if p > -N or p i (N is odd), Iu(t) I and *Vu(t)l tend
N+2 N+ 0 2 p

2N 2N
to zero as t + T*. If 1 < p < -+ 0 -+2 (N is even), there exists a number

T'*(< T*) such that 17u(t)U tends to zero as t **.
= p

Proof. It is enough to show that the solution w of (NP)2  tends to zero in L k+1((M.

From (3.4) in the proof of Lena 3.1, we have

k1 dt cik+Idx IwIfIClk-'lywcI 2 + £)2dx - k I wElkIk(IVwcIZ + C) 2 dx
+ I I w1

-7-



The second term can be rewritten as

2 k-I 2(k-1) p£

___2_______ w')I + Eiwl p
(p + kc- )

which is bounded below by

k-1

(p + kc UlP

Then, noting 1 < p < 2, we have

1c id C k+1ld. kpP IVI' P C)pd < C 2 k £ I 1k-id
Z+_1 dt (p4 +c k UP

By Corollary in Section 2, H6lder's inequality and (3.1), we get

p+k-1
1 d jIW-l k+1l kppK ( c weIi k+i 2 3.0
k t (p + k - )P

where C depends on k, p, uO and 42 but independent of r. Let

y(t) f iw(x,t)Iklldx .(3.11)

As C tends to zero in (3.10), we have the differential inequality

1-6
y' (t) + C Iy(t) < 0 in V'(0,T)

where

1(p + k- 1)P

and c-(c+1Pk
0 < 2 p <z- I

k + 1

By the comparison argument and the uniqueness of solutions, we conclude that

y(t) *0 as t . T*



(p + k - )PIU0 - 12-p

ppkK(2 - p)

and

y(t) E 0 for t T*

By the abstract results of 18], we have

for t > 0.

From this, we can estimate *7u(t)I as follows.

f jVujpd. I jVwjpdx - dv(jVwjp
2Vw) wdx

1 div( IVw(t)Ip-2Vwt) )121w(t)1 2

Ow *w(t)12 Iw(t)I 2

- w I Nw (t)I
-t 0 2 2

for t > 0.

Since div(IjVw(t)Ip-
2Vw(t)) e L2(Q) for a.e. t e (0,T), the first part of this

calculation make valid.

From Nirenberg-Galiardo inequality (9], we have

a 1-a

where a satisfies - I)& -j + (I a) and r < NP (the equality holds if N is
r p NN

odd).

If p > 2 or p 2N~- (N is odd), we have 1 > (2p N Np). Then wecan

take k as 1 and get

2 I C~~p= < 2 2

-9-



L ~ ~~In the other case (I<p 2N r N +- Ni vn) egtol2N 2N
Inth ohe cse < <N + 2 =N + 2 (N is even)), we get only

1Vu(t)UP < C! C't) w

p t 2 t k+1

4. THE EQUATION ut A u + Xlui-lu"-. p

In this section we will discuss the Neumann problem for the equation

Ut f A u + Alula-lu (4.1)p

where X > 0 and a > 1.

The equation (4.1) with Neumann zero boundary condition has a solution independent

of x which satisfies the ordinary differential equation

Ut = Alula-lu (u = u(t)) • (4.2)

It is well-known that solutions of (4.2) blow up in finite time when a > 1 and glow

up when a = 1. By the comparison theorem, if there exists a positive number 6 such

that u0 (x) 2 6 > U or 0 > -6 2 u0 (x) for all x e a (u0 (x) is a initial condition),

then the solution of (4.1) with Neumann zero boundary condition and initial condition

u0 (x) blow up in finite time when a > 1 and glow up when a 1.

We are interested in the case that u0 (x)..has positive part and negative part in a.

We now give results in the case that a - 1. When a > 1, it is not yet known

whether the problem (4.1) with Neumann zero boundary condition has extinction phenomena or

not.

Consider the following problem (a = 1)

Ut = ApU + XU in Q x (0,T)

a = 0 on M( x (0,T) (PP)

u(x,0) = Uo(X) in 11

Let u(x,t) be a solution of (PP) with initial condition u0 e L k+l(),

k > max(1, - (2N -p - Np)).
, p

Theorem 4.1.

Let U0 = J f u0(x)dx. If u - U0 k+I is sufficiently small, then there exists a

number T* > 0 such that

-10-
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Ult) ; ~(t) in L+g) as t *T

and

-~t a(t) for t >T*

where ;(t) 0 At

Moreover T* is bounded above by

lo p kK - A(p + k Ic )Plu 0  0 1 +

proof. Integrating the equation (PP) over ),we have

dfu(x,t)dx = .f u~x,t)dxc

which implies

f u(x,t)dx - Uue t e 10,T)

We define

w(x~t) -u~x,t) -U~t)

Then w~x,t) satisfies

f w(x~t)dx -0

and

Wt - A w + ).w In A1 X (0,T)

- 0 on 39 x (0,T) P l

v(X,O) -u 0 (X) -o wo(x) in 0

Multiplying the equation (PP), by Iw(x,t)lk-lw(X,t) (kc 1), integrating over 0 and

through the same procedure &,a Theorem 3.2, we have

D+k- 1
1~k di _________ k+' < wk+1d
~ f IwI+'dx + P~K ~ I~+d)) w x* (4.1)

k + dt(p + kc - l)P

Let y(t) WW *t)k.~l* From (4.1) we have

y'Ct) + Cjy(t)P-' Xy(t) in V'(O,T) (4.2)

.~~. . . .



where C1  p pkK

(p + k - p

By the comparison argument, (4.2) implies

y(t) < - . C) ~( )t2P(4.3)

If we take uo as

C pk
1u0 ~- p Ok1< 1) 2  

)2-plu I <(4.4)

then

y(t) EKWWtI k+1 *0 as t *

* where

T* < og-kK - (-)
=lgp~kK -A~p + k - )Plu I *2-p'

0 0Ok+1

Corollary,

If f uoCx)dx -0, that is, u0  0 and lu Ik is sufficiently small, then there

exists a number T* > 0 such that

u~t) *0 in akl() s t Ta

and

U(t) S0 for t Ta

Remark.

Consider the stationary problem for (PP):

-AuAu in Ql

(SP)
au

* If (SP) has a solution, we have

k-i
Ppk k+ 1

(p + k I)P 1(1 )Icx=Aful d .L

-12-



Since fu(x)dx -0, we can apply Corollary in Section 2 to obtain

(p + k - l)P U I~~d + u ~

for k > max( 1, ~-(211- p -Np)) which implies
- p

I

(P~k< )2  l ul (4.5)
(p k ) = k+I

Comparing (4.4) with (45) we say if IuO'k+t is larger than ( 9 kK pX) 2 -p
(p+ k -1))

then there exists a solution of (PP) which is independent of t for a special initial

condition uo(x), and this solution does not extinct in finite time whenever

fuo(x)dx -0.

From this point, we conclude that the condition (4.4) for the homogenization (and

extinction) of u is critical.

-13-
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